# Final Exam, MTH 221 , Fall 2010 

## Ayman Badawi

(i) (10 points)
a. Let $A$ and $B$ be two $4 \times 4$ matrices with $\operatorname{det}(A)=-8$ and $\operatorname{det}(B)=1 / 2$. Find $\operatorname{det}\left(2 A^{-2} B^{4}\right)$.
b. Evaluate the determinant of $\left[\begin{array}{ccccc}1 & 1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ -1 & 1 & 1 & -1 & 1\end{array}\right]$
(ii) (8 points) Determine the value(s) of $a$ such that the points $(1,0,5),(1,2,4),(1,4, a)$ are dependent.
(iii) (10 points) Let $A=\left[\begin{array}{ccc}1 & 2 & 2 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$. Find a diagonal matrix $D$ and an invertible matrix $Q$ such that $A=$ $Q D Q^{-1}$. Find $A^{24}$.
(iv) (7 points) Suppose $A$ is a $3 \times 3$ matrix and $A-\alpha I_{3}=(1-\alpha)(2-\alpha)^{2}$. Given $N(A-I)=\operatorname{span}\{(1,2,0)\}$ and $N(A-2 I)=\operatorname{span}\{(2,0,3)\}$. Is $A$ diagnolizable? Explain.
(v) (10 points) Solve the following system of equations

$$
\left[\begin{array}{ccc}
1 & 0 & -1 \\
-3 & -1 & 0 \\
0 & -1 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]
$$

(vi) (10 points) The augmented matrix of a linear system has the form $\left[\begin{array}{ccc|c}1 & 2 & 1 & a \\ 2 & 3 & -2 & b \\ -1 & -1 & 3 & c\end{array}\right]$
a. For what values of $a, b$, and $c$ will the system be consistent? (you may write your answer as one equation in terms of $a . b$ and $c$ ).
b. When the above system is consistent, does the system have a unique solution or infinitely many solutions? explain.
(vii) (15 points)
a. In each question below a vector space $V$ is given, together with a subset $W \subseteq V$. In each case state (with justification) whether or not $W$ is a subspace of $V$.
i. $V=R^{2}, W=\left\{(x, y) \in R^{2} \mid x \geq 0\right.$ and $\left.y \geq 0\right\}$.
ii. $V=R_{2 \times 2}, W=\left\{A \in R_{2 \times 2} \mid \operatorname{Rank}(A) \leq 1\right\}$
b. Find a basis for the subspace $W$ where

$$
W=\left\{\left.\left[\begin{array}{ccc}
a-b+3 c & 4 a+3 b-9 c & 2 a \\
8 a+2 b-6 c & 5 a & 0
\end{array}\right] \right\rvert\, a, b, c \in R\right\}
$$

(viii) (10 points) Let $A=\left[\begin{array}{ccccc}2 & -4 & 0 & -6 & 2 \\ 0 & 0 & 1 & 0 & 0 \\ -1 & 2 & 0 & 3 & 6\end{array}\right]$. If $T: R^{5} \rightarrow R^{3}$ is defined by $T\left(\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)\right)=A\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3} \\ a_{4} \\ a_{5}\end{array}\right]$
a. Find a basis for the range of $T$
b. Find $\operatorname{Ker}(T)$ and Write $\operatorname{Ker}(T)$ as a span
(ix) (10 points) The linear transformation $T: P_{3} \rightarrow R$ is given by

$$
T(p(x))=\int_{-1}^{1} p(x) d x
$$

a. Find a $p(x)$ in $P_{3}$ so that $T(p(x))=2011$.
b. Find $\operatorname{Ker}(T)$ and write $\operatorname{Ker}(\mathrm{T})$ as a span.
c. Is $T$ one to one?explain
(x) (10 points) Let $M=\operatorname{span}\{(0,0,1,1),(1,0,1,1),(1,-1,1,0)\}$. Find an orthogonal basis for $M$.
(Bonus problem, 5 points)( You may answer it on the back) Let $A_{n}$ be the $2 \times 2$ matrix defined by

$$
A_{n}=\left[\begin{array}{cc}
1-n & -n \\
n & 1+n
\end{array}\right]
$$

a. Prove that $A_{n} A_{m}=A_{n+m}$.
b. If $B=\left[\begin{array}{cc}-1 & -2 \\ 2 & 3\end{array}\right]$ compute $B^{2011}$.

## Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

